MARINE PRODUCT GUIDE 2nd Semester 2024 Edition

Baudouin

Table of Contents

Certifications	3
Green Solutions	4
Emission Regulations	5
Rating Guidelines	6 - 9
Product Listing	10 - 13
Product Nomenclature & Common Conversions	14
Marine Propulsion Engines	15 - 31
Baudouin Hybrid Systems	32 - 37
Baudouin Advanced Emissions Technology	38 - 39
Marine Generator Sets	40 - 53
Marine Auxiliary Engines	54 - 65
Marine Control & Monitoring Solutions	66 - 69
Our Global Support Network	70

We Are Baudouin

For over 100 years, Société Internationale des Moteurs Baudouin has manufactured the highest quality engines for marine and power generation applications. In the hostile environment of a marine operator, reliability and durability are paramount, and Baudouin has been successfully serving this market since 1918.

It's from this Marine Heritage that Baudouin has a reputation for quality, adaptability, and reliability. Baudouin offers a comprehensive range of propulsion solutions, generator sets, and auxiliary engines. Baudouin products are distinguished by their genuine marine design, high level of reliability, easy maintenance, and operational economy.

Certified By Major Classification Societies

Moteurs Baudouin designs and builds marine products in compliance with the strictest safety standards. We have type approvals from major marine classification societies worldwide including:

(. 🐲

IRCLASS

Lloyd's Register

Green Solutions

Our vision for the company's future goes beyond our legacy. We are committed to providing a diverse portfolio of clean, efficient, innovative power solutions. The future is now, and we are ready.

Fabrizio Mozzi, President, Moteurs Baudouin

At Baudouin Marine, we share President Mr Mozzi's vision. We are committed to delivering a comprehensive range of marine engines and power solutions that prioritize environmental responsibility and robust technology.

Baudouin Marine Stage V Engines: Powering a Sustainable Future

At Baudouin, we are committed to providing innovative marine solutions that prioritize environmental sustainability and meet the strictest emission standards. Our Stage V engines, including the 6M26.3 and 12M26.3 models, are designed to deliver exceptional performance while minimizing their environmental impact.

HVO Compliance for Cleaner Diesel Engines

Hydrotreated Vegetable Oil (HVO) is at the heart of our commitment to sustainable energy. HVO, a renewable diesel substitute, significantly reduces greenhouse gas emissions and air pollution. By leveraging the potential of organic materials, we are not only promoting cleaner energy but also lowering our dependency on traditional fossil fuels. Part of our propulsion engines, auxiliary engines, and marine genset models are designed to be HVO-compliant, enabling our customers to embrace this sustainable fuel alternative, further solidifying our commitment to sustainability.

Emission Regulations

International Maritime Organization (IMO) Emission Regulations

The MARPOL 73/78 Annex VI: Prevention of air pollution from ships (and subsequent amendments) serves to regulate NOx emission levels on marine diesel engines. The increasing regulations, 'Tiers', affect engines mounted in vessels built on or after January 1st of the year of release of the Tier. The NOx limits allowed are engine speed-dependent.

Tier	Date	NOx limit (g/kW.h)			
		n*< 130	$130 \le n \le 2000$	n ≥ 2000	
Tier III	2016	3.4	9 x n -02	2.0	
n* : rpm					

Commercial Craft Directive 2016/1628/CE (EU Stage V)

The directive regulates exhaust emissions from various mobile machinery in the European Community (EC) area. The Stage V standards became effective from 2019 for engines below 56 kW and above 130 kW, and from 2020 for engines of 56-130 kW.

Stage V Emission Standards for Inland Waterways Vessels (IWP & IWA)

Catagon	Net Power	Date	CO	HCª	NOx	PM	PN
Category	kW	Date	g/kWh			1/kWh	
IWP/WA-v/c-1	19 ≤ P < 75	2019	5.00	4.7	70 ^ь	0.30	-
IWP/WA-v/c-2	75 ≤ P < 130	2019	5.00	5.40 ^b		0.14	-
IWP/WA-v/c-3	$130 \le P < 300$	2019	3.50	1.00	2.10	0.10	-
IWP/WA-v/c-4	P ≥ 300	2020	3.50	0.19	1.80	0.0215	1x10 ¹²
^a A = 600 for gas engines	bHC + NOx						

CCNR Regulation - CCNR Central Commission for the Navigation of the Rhine implemented its stage II emissions regulation for diesel engines in July 2007. This regulation is only effective for engines with a rated power at or above 37 kW. In an amendment to the CCNR regulation, according to the EU directives, EC type certification is considered equal to the CCNR's stage II certification. Therefore engines certified to the non-road mobile machinery directive (97/68/ EC) will be accepted without direct certification to the CCNR regulation.

EPA Rating Information

The Environmental Protection Agency (EPA) is an independent executive agency, of the United States federal government for environmental protection and has the responsibility of maintaining and enforcing national standards under a variety of environmental laws.

Category	Date	Characteristic
III	2009	Engines below 600 kW
IV	2017	Engines above 600 kW

Rating Guidelines

Power Definition (Standard ISO 3046/1 - Units are metric)

Reference conditions		Fuel oil	
Ambient temperature	25 °C	Relative density	0,840 ± 0,005
Barometric pressure	100 kPa	Lower calorific power	42 700 kJ/kg
Relative humidity	30 %	Consumption tolerances	0 ± 5 %
Raw water temperature	25 °C	([DIN ISO 3046-1)
Ambient temperature	45 °C	Inlet limit temperature	35 °C
Raw water temperature	32 °C	 Ratings comply with cl societies maximum ten 	
		societies maximum ten	iperacore

- definition without power derating
- Fuel consumption declared conditions IMO II.

Tier 3 Standards for Marine Diesel Category 1 Commercial Standard Power Density (≤ 35 kW/dm3) Engines

Power (P) <i>kW</i>	Displacement (D) dm3 per cylinder	NOx+THC g/kWh	PM g/kWh	Date
P < 19	D < 0.9	7.5	0.40	2009
19 ≤ P < 75	D < 0.9ª	7.2	0.30	2009
		4.7 ^b	0.30 ^b	2014
75 ≤ P < 3700	D < 0.9	5.4	0.14	2012
	0.9 ≤ D < 1.2	5.4	0.12	2013
	1.2 ≤ D < 2.5	5.6	0.11°	2014
	$2.5 \le D < 3.5$	5.6	0.11°	2013
	$3.5 \le D < 7$	5.8	0.11°	2012

† Tier 3 NOx+HC standards do not apply to 2000-3700 kW engines.

a - < 75 kW engines ≥ 0.9 dm3/cylinder are subject to the corresponding 75-3700 kW standards.

b - Option: 0.20 g/kWh PM & 5.8 g/kWh NOx+HC in 2014. c - This standard level drops to 0.10 g/kWh in 2018 for < 600 kW engines.

EPA Rating Information

Tier 3 Standards for Marine Diesel Category 1 Commercial High Power Density (> 35 kW/dm3) Engines And All Diesel Recreational Engines

Power (P) <i>kW</i>	Displacement (D) dm3 per cylinder	NOx+THC g/kWh	PM g/kWh	Date
P < 19	D < 0.9	7.5	0.40	2009
19 ≤ P < 75	D < 0.9 ^a	7.5	0.30	2009
		4.7 ^b	0.30 ^b	2014
75 ≤ P < 3700	D < 0.9	5.8	0.15	2012
	$0.9 \le D < 1.2$	5.8	0.14	2013
	1.2 ≤ D < 2.5	5.8	0.12	2014
	2.5 ≤ D < 3.5	5.8	0.12	2013
	$3.5 \le D < 7$	5.8	0.11	2012

a - < 75 kW engines ≥ 0.9 dm3/cylinder are subject to the corresponding 75-3700 kW standards. b - Option: 0.20 g/kWh PM & 5.8 g/kWh NOx+HC in 2014.

Tier 4 Standards for Marine Diesel Category 1/2 Engines

Power (P) <i>kW</i>	NOx g/kWh	HC g/kWh	PM g/kWh	Date
P ≥ 3700	1.8	0.19	0.12ª	2014 ^c
	1.8	0.19	0.06	2016 ^{b,c}
$2000 \le P < 3700$	1.8	0.19	0.04	2014 ^{c,d}
$1400 \le P < 2000$	1.8	0.19	0.04	2016 ^c
$600 \le P < 1400$	1.8	0.19	0.04	2017 ^d

a - 0.25 g/kWh for engines with 15-30 dm3/cylinder displacement.

b - Optional compliance start dates can be used within these model years.

c - Option for Cat. 2: Tier 3 PM/NOx+HC at 0.14/7.8 g/kWh in 2012, and Tier 4 in 2015.

d - The Tier 3 PM standards continue to apply for these engines in model years 2014 and 2015 only.

Rating Guidelines

Propulsion Engines

	Power Class	Definition
P1	Continuous Duty	Continuous application with little or no engine speed/load variations. Displacement hull. Engine mean load factor: 100% • Annual duration of use: Unrestricted • Use under full load: 100% Application examples: Deep sea and shrimp trawlers, high sea or river tug boats, towboats, cargos, cargo boats, dredgers, and ferries, sea going and inland tug and push boats, freighters, dredges, and ferries.
P2	Heavy Duty	Continuous application with frequent variations in engine speed and load. Displacement or semi- displacement hull. Engine mean load factor: 80% • Annual duration of use: <5,000 hours • Use under full load: 8 hours in a 12-hour period (67%) Application examples: Annual passenger vessels, harbour tugs, self-propellers, coasters, fast fishing boats such as tuna boats, seiners, pot vessels or liners buoying vessels, oceanographic research vessels.
P3	Intermittent Duty	 Intermittent application with significant variations in engine speed and load. Planing or semi-planing hull. Engine mean load factor: 60% • Annual duration of use: <3,000 hours • Use under full load: 2 hours in a 12-hour period (17%) Application examples: Seasonal passenger vessels, fishing launches, pilot boats, commercial pleasure boats, pump boats, displacement sailboats, trawlers, bow thrusters.

Rating Guidelines

Propulsion Engines Continued

F	Power Class	Definition
P4	Light Duty	Light application with significant variations in engine speed and load. Planning hull. Engine mean load factor: 60% • Annual duration of use: <1,500 hours • Use under full load: 1 hour in a 12-hour period (8%) Application examples: Private pleasure boats, multi-hull pleasure boats, survey or rescue fast vessels, military fast vessels.
Ρ5	High Performance Duty	High performance application with significant variations in engine speed and load. Engine mean load factor: 60% • Annual duration for use: <500 hours • Use under full load: 1 hour in a 12- hour period (8%) Application examples: Private pleasure boats, multi-hull pleasure boats.

Generator Sets & Auxiliary Engines

Po	wer Class	Definition
COP	Continuous Power	 Constant Load Load and time unrestricted 10% overload available and limited at 1 h / 6 h
PRP	Prime Power	 Unrestricted running time Time at full load ≤ 500 hrs/year Load variation ≤ 75% of rated power 10% overload 1 hr/12 hrs
ESP	Emergency standby power	 Running time 200 hrs / year max Load variation 110% of Prime power Average load factor should not exceed 70% of the engine's ESP power rating

Warranty Disclaimer: Warranty does not apply whenever the engine operation conditions differ from the initial duty class - P1, P2, P3, P4, and P5 - operational conditions. The operator must therefore modify the duty class accordingly, to benefit from S.I. Baudouin warranty coverage.

Product Listing

Marine Propulsion Engines

Rating	kW	HP	RPM	Engine Model	Page
P1	240			6M16	17
P1	294	400	1800	6W126M	18
P1	368	500	1800	6M21.3	19
P1	441	600	1800	6M26.3	21
P1	441	600	1800	6M26.3 Hybrid Version	21
P1	441	600	1800	6M26.3 IMO III/ EPA 4/ Stage V	22
P1	478	650	1800	6M33.2	23
P1	552	720	1600	6M33.3	24
P1	552	780	1800	6M33.3	24
P1	662	900	1800	12M26.2	26
P1	736	1000	1800	12M26.2	26
P1	883	1200	1800	12M26.3	27
P1	883			12M26.3 Hybrid Version	27
P1	883	1200	1800	12M26.3 IMO III/EPA 4/ Stage V	28
P1	956	1300	1800	12M33.2	29
P1	1287	1750	1600	16M33.3	31
P1	1434	1950	1800	16M33.3	31
P1	1800	2450	1600	12M55	30
P1	1912	2600	1800	12M55	30
P2	136	185	2100	6W105M	16
P2	264	359	2100	6M16	17
P2	331	450	2100	6W126M	18
P2	405	550	1800	6M21.3	19
P2	485	660	1800	6M26.3	21
P2	485	660	1800	6M26.3 Hybrid Version	21
P2	515	700	2000	6M26.3	21
P2	515	700	2000	6M26.3 Hybrid Version	21
P2	515	700	2000	6M26.3 IMO III/ EPA 4/ Stage V	22
P2	515	700	1800	6M33.2	23
P2	552	750	2100	6M26.3	21
P2	552	750	2100	6M26.3 Hybrid Version	21
P2	552	750	2100	6M26.3 IMO III/ EPA 4/ Stage V	22
P2	552	750	1800	6M33.2	23

Hybrid version

Rating	kW	HP	RPM	Engine Model	Page
P2	574	800	1600	6M33.3	24
P2	574	850	1800	6M33.3	24
P2	809	1100	1900	12M26.2	26
P2	883	1200	1950	12M26.2	26
P2	972	1320	1800	12M26.3	27
P2	1029	1400	1800	12M33.2	29
P2	1030	1400	2100	12M26.3	27
P2	1030	1400	2100	12M26.3 IMO III/EPA 4/ Stage V	28
P2	1103	1500	2200	12M26.3	27
P2	1103	1500	2200	12M26.3 IMO III/EPA 4/ Stage V	28
P2	1103	1500	1800	12M33.2	29
P2	1361	1850	1600	16M33.3	31
P2	1545	2100	1800	16M33.3	31
P2	1985	2700	1600	12M55	30
P2	2205	3000	1800	12M55	30
P3	168	228	2425	6W105M	16
P3	441	600	2100	6M21.3	19
P3	599	815	2300	6F21	20
P3	599	815	2100	6M26.3	21
P3	599	815	2100	6M26.3 Hybrid Version	21
P3	599	815	2100	6M26.3 IMO III/ EPA 4/ Stage V	22
P3	670	911	1900	6M33.3	24
P3	809	1100	2300	8F21	25
P3	1214	1650	2300	12M26.3	27
P3	1214	1650	2300	12M26.3 Hybrid Version	27
P3	1214	1650	2300	12M26.3 IMO III/EPA 4/ Stage V	28
P3	2536	3450	1800	12M55	30
P4	662	900	2300	6F21	20
P4	750	1020	2000	6M33.3	24
P4	919	1250	2300	8F21	25
P5	735	1000	2300	6F21	20
P5	1000	1360	2300	8F21	25

Other power ratings are available on request.

Product Listing

Marine Generator Sets

Application	kWe	kVa	RPM	Genset Model	Page
PRP	75	93.7	1500	4W105ES	41
ESP	105	84	1500	4W105ES	41
ESP	124	155	1500	6W105ES	42
ESP	148	185	1800	6W105ES	42
PRP	80	100	1500	4W105S	41
PRP	100	125	1800	4W105ES	41
PRP	100	125	1800	4W105S	41
ESP	104	130	1800	4W105ES	41
PRP	120	150	1500	6W105S	42
PRP	120	150	1500	6W105ES	42
PRP	136	170	1800	6W105ES	42
PRP	136	170	1800	6W105S	42
PRP	192	240	1500	6M16	43
PRP	208	260	1800	6M16	43
PRP	264	330	1500	6W126S	44
PRP	280	350	1800	6W126S	44
PRP	416	520	1500	6M26.3	45
PRP	416	520	1500	6M26.3 IMO III/EPA 4/ Stage V	46
PRP	472	590	1800	6M26.3	45
PRP	472	590	1800	6M26.3 IMO III/EPA 4/ Stage V	46
PRP	472	590	1500	6M33.2	47
PRP	520	650	1800	6M33.2	47
PRP	840	1050	1500	12M26.2	48
PRP	840	1050	1500	12M26.3	49
PRP	840	1050	1500	12M26.3/IMO III/EPA 4/ Stage V	50
PRP	954	1195	1800	12M26.3/IMO III/EPA 4/ Stage V	50
PRP	952	1190	1500	12M33.2	51
PRP	1056	1320	1800	12M26.3	49

Other power ratings are available on request.

Power factor used to convert kVA to kWe is 0,8.

Marine Auxiliary Engines

Application	kW	RPM	Engine Model	Page
PRP	90	1500	4W105S	53
PRP	104	1800	4W105S	53
PRP	129	1500	6W105S	54
PRP	145	1800	6W105S	54
PRP	204	1500	6M16	55
PRP	223	1800	6M16	55
PRP	290	1500	6W126S	56
PRP	300	1800	6W126S	56
PRP	441	1500	6M26.3	57
PRP	441	1500	6M26.3 IMO III/EPA 4/ Stage V	58
PRP	485	1800	6M26.3	57
PRP	500	1500	6M33.2	59
PRP	501	1800	6M26.3 IMO III/EPA 4/ Stage V	58
PRP	552	1800	6M33.2	59
PRP	710	1500	12M26.2	60
PRP	736	1800	12M26.2	60
PRP	882	1500	12M26.3	61
PRP	882	1500	12M26.3 IMO III/ EPA4/ Stage V	62
PRP	970	1800	12M26.3	61
PRP	1000	1500	12M33.2	63
PRP	1104	1800	12M33.2	63
PRP	1197	1500	12M26.2	60
PRP	1200	1800	12M26.3 IMO III/ EPA4/ Stage V	62
PRP	1251	1800	12M26.2	60

Other power ratings are available on request.

All our ratings are based on constant speed auxiliary engines.

Auxiliary variable speed engines option available on request (IMO II only).

Product Nomenclature

W Series					
#Cylinders	Engine Spec	Bore	(M) Marine (S) Generator Set/Auxiliry		
6	W	105	М		

		M Series	
#Cylinders	Engine Spec	Unit Displacement	<.2 Mechanical .3 Electronic
6	М	26	.3

Common Conversions

Power

1 kW = 1.36 metric HP 1 kW = 1.341 BHP 1 BHP = 1.014 metric HP

Length

1 cm = 0.3937 in 1 m = 3.28 ft 1 naut. mile = 1.853 km 1 mile = 1.609 km

Temperature

1°C = (1°F-32)/1.8

Mass

1 g = 0.035 oz 1 kg = 2.2 lb 1 metric ton = 1.1 short ton

Torque

1 Nm = 0.102 mkg 1 Nm = 0.74 lb ft Nm = kW*9549/rpm

Energy

1 cal = 4.187 J

Pressure

1 mm Hg = 1.333 mbar 1 mm H2O = 0.981 mbar 1 mbar = 100 Pa 1 bar = 14.50 psi

Volume

1L = 0.26 gallon (US) 1L = 0.21 gallon (UK) 1L = 61.02 in3

Specific fuel oil

consumption (SFOC) SFOC (g/kWh) = L/hr * 840/kW

MARINE PROPULSION ENGINES

Baudouin marine propulsion engines are recognized worldwide for their quality, durability, and reliability. Baudouin's products comply with the latest marine and inland shipping environmental standards. Baudouin engines are designed specifically for marine applications, and optimized for easy and cost-effective maintenance.

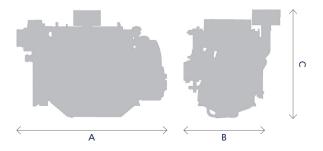
- Genuine Marine Design
- Best-in-class mean time between overhaul
- Design optimized for maintenance simplicity
- Reliability in the most extreme conditions

6W105M

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 105 x 130 mm 6.7L counterclockwise 700 rpm SAE 3 SAE 11.5"

W105 Advantages

Unparalleled propulsion torque at low RPM.


Easy maintenance with simple mechanical injection and unit cylinder heads. Affordable engine.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P2	136	182	2100	211	34	
Р3	168	225	2425	227	44.9	

Other power ratings are available on request.

Main dimensions (mm) and dry weight (kg)

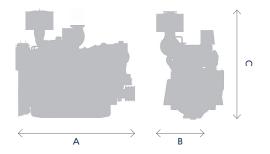
А	В	С	Weight
1362	900	1076	810

6M16

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 6 in line 126 x 130 mm 9.7L counterclockwise 600 rpm SAE 1 SAE 14"

M16 Advantages

Reliable design.


Unparalleled propulsion torque at low RPM.

Easy maintenance with simple mechanical injection and unit cylinder heads. Affordable engine.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	240	322	2100	234	66	
P2	264	354	2100	206	64	

Other power ratings are available on request.

А	В	С	Weight
1513	867	1445	1050

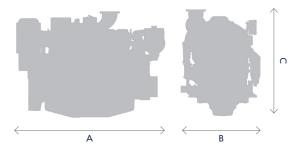
6W126M

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 126 x 150 mm 11.6L counterclockwise 700 rpm SAE 1 SAE 14"

W126 Advantages

Reliable design.

A reference for towing / pushing applications.


Easy maintenance with simple mechanical injection and unit cylinder heads. Affordable engine.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	294	400	1800	200	70	
P2	331	450	2100	210	83	11

Other power ratings are available on request.

Main dimensions (mm) and dry weight (kg)

А	В	С	Weight
1691	886	1406	1200

6M21.3 NEW

6

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel

127 X 165 mm 12.5L counterclockwise 700 rpm SAE 1 SAE 14"

6M21.3 Series Advantages

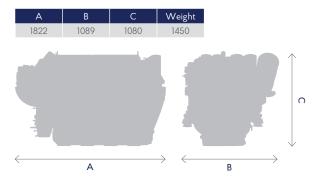
Genuine marine design. Global environment care. Continuous compact power. Life cycle cost efficiency.

Rating	kW	Нр	rpm	IMO
P1	368	500	1800	II
P2	405	550	1800	II
P3	441	600	2100	II

А	В	С	Weight
1552	1000	1100	1180

6F21

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel Common-rail injection
- 6 in line 127 x 165 mm 12.5L counterclockwise 700 rpm SAE 1 SAE 14"


6F21 Advantages

Best-in-class 13L engine. Compact & light with very high power density. Extreme durability.

Optimized maintenance for low total cost of ownership.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P3	599	815	2300	220	155	
P4	662	900	2300	223	174	
P5	735	1000	2300	228	197	

Main dimensions (mm) and dry weight (kg)

6M26.3

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel Common-rail injection
- 6 in line 150 x 150 mm 15.9L counterclockwise 650 rpm SAE 1 SAE 14"

6M26.3 Advantages

Excellent fuel consumption. Unparalleled performance in heavy duty applications.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO	EPA
P1	441	600	1800	197	103		3
P2	485	660	1800	200	119	11	-
P2	515	700	2000	206	124		3
P2	552	750	2100	212	137	11	3
P3	599	815	2100	219	154	11	3

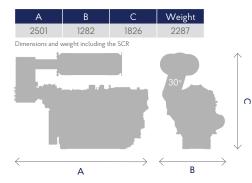
Other power ratings are available on request.

6M26.3 IMO III | EPA 4 / Stage V

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 150 X 150 mm 15.9L counterclockwise 650 rpm SAE 1 SAE 14"

6M26.3 + SCR Advantages

Excellent fuel consumption. IMO III / EPA 4 and all major certifications. Unparalleled performance in heavy duty applications.


Adaptable configuration available:

360 degrees rotatable axis to allow maximum flexibility. SCR is also available as a standalone product. See pages 39 for more information.

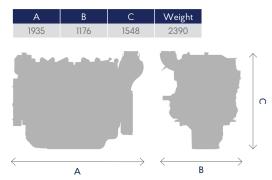
Rating	kW	Нр	rpm	g/kWh	l/h	IMO	EPA	Stage V
P1	441	600	1800	201	103		4	\checkmark
P2	515	700	2000	215	124	111	4	\checkmark
P2	552	750	2100	217	141	111	4	\checkmark
P3	570	775	2100	220	143		4	\checkmark
P3	599	815	2100	226	154		4	-

Main dimensions (mm) and dry weight (kg)

6M33.2

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 6 in line 150 x 185 mm 19.6L counterclockwise 650 rpm SAE 1 SAE 14″

6M33.2 Advantages


Simple mechanical injection. Affordable engine.

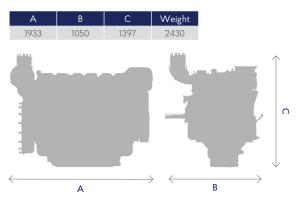
LOW SPEED TORQUE

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	478	650	1800	211	120	
P2	515	700	1800	209	128	
P2	552	750	1800	214	141	11

Other power ratings are available on request.

6M33.3 NEW

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 6 in line 150 x 185 mm 19.8L counterclockwise 700 rpm SAE 0 SAE 18"



6M33.3 Advantages

Efficient fuel consumption. Easy maintenance. Highly reliable. Life cycle cost efficiency.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	552	720	1600	135	198	
P1	552	780	1800	136	201	11
P2	574	800	1600	139	198	II
P2	574	850	1800	141	200	11
P3	670	911	1900	179	205	II
P4	750	1020	2000	203	201	

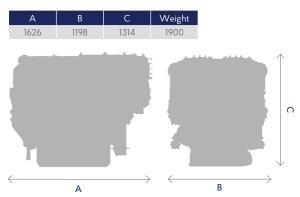
Main dimensions (mm) and dry weight (kg)

8F21 <u>NEW</u>

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 8 127 x 165 mm 16.7L counterclockwise 700 rpm SAE 1 SAE 14"

8F21 Advantages

Extreme durability.


Best-in-class 17L engine.

Compact ϑ light with very high power density.

Optimized maintenance for low total cost of ownership.

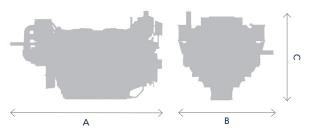
Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P3	809	1100	2300	211	212	
P4	919	1250	2300	207	250	
P5	1000	1360	2300	204	274	

Other power ratings are available on request.

12M26.2

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 12 V @ 90° 150 x 150 mm 31.8L counterclockwise 700 rpm SAE 0 SAE 18"

12M26.2 Advantages


M26.2 series can serve most project requirements worldwide. Reliable design. Affordable engine.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	662	888	1800	198	154	
P1	736	987	1800	201	174	11
P2	808	1083	1900	194	184	
P2	883	1184	1950	194	201	II

Other power ratings are available on request.

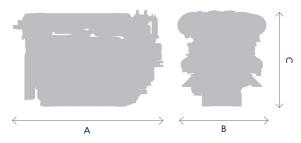
Main dimensions (mm) and dry weight (kg)

А	В	С	Weight
2762	1544	1813	3440

12M26.3

Number of cylinders12Bore and stroke12Total displacement13Engine rotation14Idle speed6Flywheel housing5Flywheel5Common-rail injection5

12 V @ 90° 150 x 150 mm 31.8L counterclockwise 650 rpm SAE 0 SAE 18"



12M26.3 Advantages

Excellent fuel consumption. Unparalleled performance in heavy duty applications.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO	EPA
P1	883	1200	1800	200	207		3
P2	972	1320	1800	201	232		-
P2	1030	1400	2100	206	250		3
P2	1103	1500	2200	211	275		3
P3	1215	1650	2300	215	311		3

А	В	С	Weight
2501	1367	1487	3300

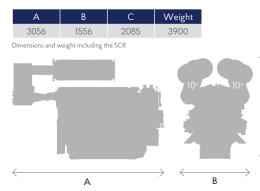
12M26.3 IMO III | EPA 4 / Stage V

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 12 V @ 90° 150 x 150 mm 31.8L counterclockwise 650 rpm SAE 0 SAE 18"

12M26.3 Advantages

Excellent fuel consumption. Unparalleled performance in heavy duty applications.

Adaptable configuration available:

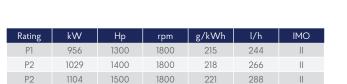

360 degrees rotatable axis to allow maximum flexibility. SCR is also available as a standalone product. See pages 39 for more information.

0

Rating	kW	Нр	rpm	g/kWh	l/h	IMO	EPA	Stage V
P1	883	1200	1800	202	209		4	\checkmark
P2	1030	1400	2100	210	254	111	4	\checkmark
P2	1103	1500	2200	210	275		4	\checkmark
P3	1214	1650	2300	209	311		4	\checkmark

Main dimensions (mm) and dry weight (kg)

12M33.2


Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 12 V @ 90° 150 x 185 mm 39.2L counterclockwise 650 rpm SAE 0 SAE 18"

12M33.2 Advantages

Simple mechanical injection. Reliable design. Affordable engine.

BEST-IN-CLASS

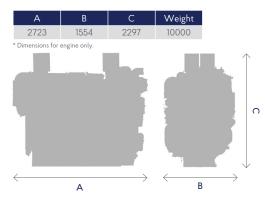
12M55 <u>COMING SOON</u>

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 12 180×215 mm 65.65L counterclockwise 700 rpm SAE00 SAE 21"

M55 Series Advantages

High reliability.

Long maintenance life.


Excellent fuel consumption.

Easy maintenance, even in small engine rooms.

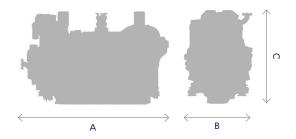
Continuous compact power with reference performances in its category.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	1800	2450	1600	188	409	
P1	1912	2600	1800	192	462	
P2	1985	2700	1600	187	434	
P2	2205	3000	1800	189	515	
P3	2536	3450	1800	187	612	

Main dimensions (mm) and dry weight (kg)

16M33.3 NEW

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 16 150 x 185 mm 52.3L counterclockwise 600 rpm SAE 00 SAE 21"



16M33.3 Series Advantages

Genuine marine design. Global environment care. Continuous compact power. Latest safe technology. Life cycle cost efficiency.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	1287	1750	1600	218	338	
P1	1434	1950	1800	213	368	
P2	1361	1850	1600	218	358	
P2	1545	2100	1800	217	406	

А	В	С	Weight
2945	1418	1922	6200



A COMPLETE HYBRID SYSTEM SUPPLIER

Marine has been in our DNA for over a century. Our hybrid solutions are designed for marine needs, and we are committed to supporting our partners' challenges for a greener world. From the idea to the realization, our R&D team is dedicated to partnering with you in your marine hybrid projects.

- · Flexibility in power and fuel management
- Optimization of the maintenance cost
- Engine downsizing
- Across all applications: passenger, military, fishing, crew, yacht, etc.

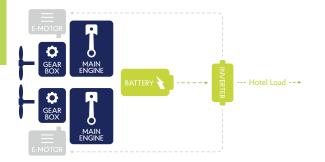
Parallel Hybrid Configuration

A diesel engine is connected via a clutch and gearbox to the propeller in a standard propulsion system. Also connected in parallel to the gearbox is an electric motor and battery pack, enabling the system to switch between an electric drive or a standard diesel motor.

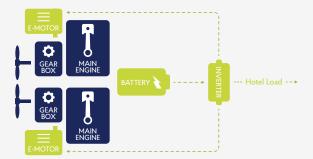
During operation the engine can be used to recharge the batteries which are then discharged to improve overall system efficiency, reducing fuel consumption and allowing for zero-emissions running.

Series Hybrid Configuration

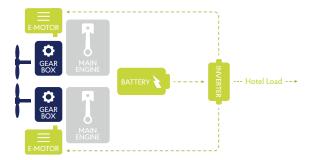
Utilizing onboard electrical generation systems, batteries can be charged and then discharged through the onboard electrical motors to allow for low noise and zero-emissions operation.


Efficiency improvements through optimal loading of the generators can improve fuel consumption, service costs, and exhaust emissions allowing reduced running hours and full electric operation.

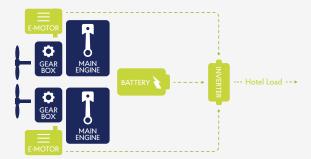
Hybrid Modes


Diesel Drive Mode

- E-Motor off
- Propulsion by main engine (Diesel)
- \cdot Hotel load by main generator or battery


Boost Mode

- Main engine (Diesel) on
- \cdot Main generator on
- Propulsion by E-motor and main engine (Diesel)
- Powered by main generator or battery
- · Hotel load by main generator or battery


Electric Drive Mode

- Main engine (Diesel) off
- Propulsion by E-motor
- Powered by main generator or battery
- Hotel load by main generator or battery

Generator Mode

- Main engine (Diesel) on
- Propulsion by main engine (Diesel)
- E-motor as generator driven by main engine
- Main generator only switch on if additional load of battery or hotel load is required

Hybrid Marine Propulsion Engines

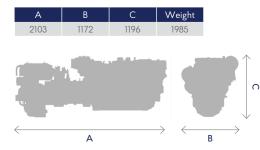
6M26.3

Number of cylinders 6 in line Bore and stroke (mm) 150 X 150 Total displacement (L) 15.9 Compression ratio 15/1Engine rotation Counter clockwise Idle speed 650 Flywheel SAE 1 Flywheel housing SAE 14"

6M26.3 Advantages

Genuine marine design.

Global environment care with low exhaust emissions


at any running cycle.

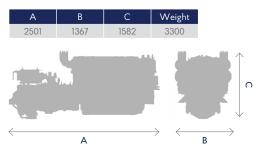
Latest technology with electronic injection.

Life cycle cost efficiency with extended MTBO.

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	441	600	1800	195	103	/
P2	485	660	1800	198	114	11
P2	515	700	2000	198	124	/
P2	552	750	2100	198	137	/
P3	599	815	2100	197	154	/

Main dimensions (mm) and dry weight (kg)

Number of cylinders	12V @ 9
Bore and stroke (mm)	150 X 150
Fotal displacement (L)	31.8 L
Compression ratio	15/1
Engine rotation	Counter
dle speed	650
lywheel	SAE 0
lywheel housing	SAE 18"


12M26.3 Advantages

Genuine marine design. Global environment care with low exhaust emissions at any running cycle. Latest technology with electronic injection. Life cycle cost efficiency with extended MTBO.

Download Specshee

Rating	kW	Нр	rpm	g/kWh	l/h	IMO
P1	883	1200	1800	200	207	/
P2	972	1320	1800	199	232	11
P2	1030	1400	2100	199	250	/
P2	1103	1500	2200	200	275	/
P3	1214	1650	2300	205	311	/

BAUDOUIN ADVANCED EMISSIONS TECHNOLOGY

IMO III, EPA Tier 4 and Stage V Certified

Our advanced engines deliver superior fuel economy without compromising engine power. In addition, the Baudouin SCR system is smaller, lighter and more flexible than other solutions, reducing costs and space requirements for our customers while maximizing product reliability.

Our Advanced Engines Deliver

- A cleaner engine with the same power
- · Up to 5% reduction in average fuel consumption
- · Optimized maintenance schedule in line with the engine
- · An extremely compact, modular design
- Up to 25 dB noise reduction

Superior Installation Flexibility

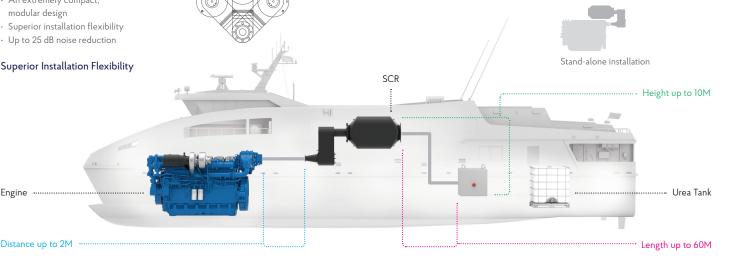
A Dynamic Catalyst

The Baudouin SCR catalyst adapts to any vessel layout. The system can rotate 360° on its axis to allow maximum mounting flexibility. In addition, the catalyst is 1m³ in volume, one of the smallest available on the market.

A Compact, Flexible System

Designed with our customers' individual needs in mind, the compact Baudouin SCR system can be easily integrated into the propulsion line, with a variety of configurations to suit every vessel design. There is no need for the whole system to be mounted in the engine room. We can help customers create a bespoke solution for their individual vessel's layout.

Adaptable Configurations


12M26.3

Over-gearbox installation (typical)

Over-engine installation (typical)

6M26.3

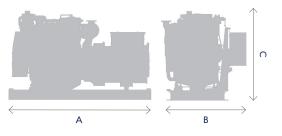
MARINE GENERATOR SETS

Baudouin offers a wide range of marine generator sets designed for use in the most extreme marine conditions. This extensive range of marine products offers a one-stop shop for marine power and control solutions.

- Mechanical injection engines simplify maintenance
- Reliability in the most extreme conditions
- Best-in-class fuel consumption
- High-efficiency alternators

4W105S

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed 4 in line 105 x 130 mm 4.5L counterclockwise 650 rpm


4W105S Advantages

Easy service with accessible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls). Affordable genset. Reliable design.

Engine	Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	Cooling
4W105S	PRP	50	100	80	1500	203	21.5	-
4W105S	PRP	60	125	100	1800	185	23.5	-

* Other power ratings are available on request.

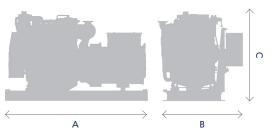
	А	В	С	Weight
4W105S	1702 - 1772	1042 - 1132	1158	1073 - 1145

4W105ES

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed 4 in line 105 x 130 mm 4.5L counterclockwise 650 rpm

4W105ES Advantages

Easy service with accesible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls). Affordable genset.


Reliable design.

Engine	Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	Cooling
4W105ES	PRP	50	93.7	75	1500	203	21.5	Radiator
4W105ES	ESP	50	105	84	1500	208	22	Radiator
4W105ES	PRP	60	125	100	1800	210	29	Radiator
4W105ES	ESP	60	130	104	1800	189	24	Radiator

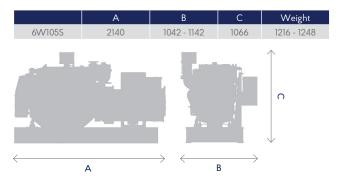
* Other power ratings are available on request.

Main dimensions (mm) and dry weight (kg)

4W105ES 2040 999 1260 1310		А	В	С	Weight
	4W105ES	2040	999	1260	1310

6W105S

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed 6 in line 105 x 130 mm 6.7L counterclockwise 650 rpm


6W105S Advantages

Easy service with accesible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls). Affordable genset. Reliable design.

	Engine	Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO	Cooling
e	6W105S	PRP	50	150	120	1500	298	31.5		-
6	6W105S	PRP	60	170	136	1800	283	36		-

* Not applicable

Other power ratings are available on request.

6W105ES

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed 6 in line 105 x 130 mm 6.7L counterclockwise 650 rpm

6W105ES Advantages

Easy service with accesible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls). Affordable genset. Reliable design.

Engine	Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO	Cooling
6W105ES	PRP	50	150	120	1500	298	31.5	NA*	Radiator
6W105ES	ESP	50	155	124	1500	321	34	NA*	Radiator
6W105ES	PRP	60	165	132	1800	340	36		Radiator
6W105ES	ESP	60	185	148	1800	378	40	NA*	Radiator

* Not applicable

Other power ratings are available on request.

Main dimensions (mm) and dry weight (kg)

	А	В	С	Weight
6W105ES	2450	759	1313	1430

6M16

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed 6 in line 126 x 130 mm 9.7L counterclockwise 600 rpm

6M16 Advantages

Easy service with accesible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls). Affordable engine.

Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO
PRP	50	240	192	1500	211	51	
PRP	60	260	208	1800	210	55	

Other power ratings are available on request.

А	В	С	Weight
2347 - 2412	1130	1566	1794-2059

6W126S

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed

6 in line 126 x 155 mm 11.6L counterclockwise 600 rpm

0

6W126S Advantages

Easy service with accessible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls). Reliable design.

Affordable engine.

6M26.3

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Common-rail injection 6 in line 150 x 185 mm 15 91 counterclockwise 650 rpm

6M26.3 Advantages

Rating

PRP

PRP

Genuine marine design with simple solutions, routine maintenance front area and engine block inspection hatches.

rpm

1800

g/kWh

195

198

l/h

103

119

IMO

Ш

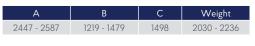
EPA

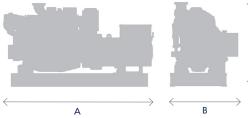
NA

3

Life cycle cost efficiency with extended MTBO, modular concept reducing number of components and interfaces.

kWe


416

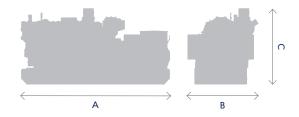

472

Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO
PRP	50	330	264	1500	198	68	
PRP	60	350	280	1800	205	73	11

Other power ratings are available on request.

Main dimensions (mm) and dry weight (kg)

50


Main dimensions (mm) and dry weight (kg)

kVA

520

590

А	В	С	Weight
3003	1287 - 1428	1534	3602 - 3656

6M26.3 IMO III | EPA 4 / Stage V

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Common-rail injection 6 in line 150 x 185 mm 15.9L counterclockwise 650 rpm

6M26.3 Advantages

Genuine marine design with simple solutions, routine maintenance front area and engine block inspection hatches.

Global environment care with low exhaust emissions, noise reduction and

controlled fuel consumption at any running cycle.

Life cycle cost efficiency with extended MTBO, modular concept reducing number of components and interfaces.

Adaptable configuration available:

Engine & Stand Alone. 360 degrees rotatable axis to allow maximum flexibility. SCR is also available as a standalone product. See page 39 for more information.

Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO	EPA	Stage V
PRP	50	520	416	1500	204	107		NA	\checkmark
PRP	60	590	472	1800	202	121		4	NA

Other power ratings are available on request.

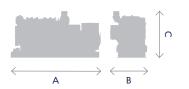
Main dimensions (mm) and dry weight (kg)

А	В	С	Weight
2501	1282	1826	2287
			

6M33.2

Number of Cylinders Bore and Stroke Total displacement Engine rotation Idle speed 6 in line 150 x 185 mm 19.6L counterclockwise 650 rpm

6M33.2 Advantages


Genuine marine design with simple solutions, easy routine maintenance and engine block inspection hatches.

Life cycle cost efficiency with extended mean time between overhauls (MBTO). Affordable engine. Reliable design.

Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO
PRP	50	590	472	1500	198	118	
PRP	60	650	520	1800	221	145	

Other power ratings are available on request.

А	В	С	Weight
3056 - 3076	1279 - 1405	1629	3920 - 4104

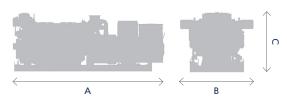
12M26.2

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed 12V @ 90° 150 x 150 mm 31.8L counterclockwise 700 rpm

12M26.2 Advantages

Genuine marine design with simple solutions, easy routine maintenance and engine block inspection hatches.

Life cycle cost efficiency with extended mean time between overhauls (MBTO). Reliable design.


Affordable engine.

Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO
PRP	50	975	780	1500	228	220	II (D2)
PRP	50	1050	840	1500	226	234	II (D2)
PRP	60	1100	880	1800	226	245	II (D2)

Other power ratings are available on request.

Main dimensions (mm) and dry weight (kg)

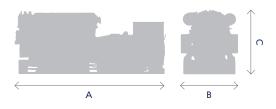
А	В	С	Weight
3717-3961	1578-1581	1839-1889	5398 - 6400

12M26.3

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Common-rail injection 12V @ 90° 150 x 150 mm 31.8L counterclockwise 650 rpm

12M26.3 Advantages

Genuine marine design with simple solutions, routine maintenance front area and engine block inspection hatches.


Latest safe technology including electronic injection dynamic redundancy, high efficient ball bearing turbocharger, integrated circuits with 0 flexible hoses, and more.

Life cycle cost efficiency with extended MTBO, modular concept reducing number of components and interfaces.

Ra	ating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO	EPA
F	PRP	50	1050	840	1500	210	221		NA
F	PRP	60	1192	954	1800	204	243		3
ŀ	'KP	00	1192	704	1000	204	243	11	3

Other power ratings are available on request.

А	В	С	Weight
3991	1478	1662	6724

12M26.3 IMO III | EPA 4

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Common-rail injection 12V @ 90° 150 x 150 mm 31.81 counterclockwise 650 rpm

12M26.3 Advantages

Genuine marine design with simple solutions, routine maintenance front area and engine block inspection hatches.

Latest safe technology including electronic injection dynamic redundancy,

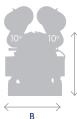
high efficient ball bearing turbocharger, integrated circuits with 0 flexible hoses, and more.

Life cycle cost efficiency with extended MTBO, modular concept reducing number of components and interfaces.

Adaptable configuration available:

Over Engine & Stand Alone.


360 degrees rotatable axis to allow maximum flexibility. SCR is also available as a standalone product. See page 39 for more information.



Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO	EPA
PRP	50	1050	840	1500	210	221		NA
PRP	60	1195	954	1800	204	243		4

Other power ratings are available on request.

Main dimensions (mm) and dry weight (kg)

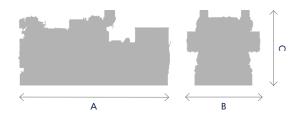
0

12M33.2

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed

12V @ 90° 150 x 185 mm 39.21 counterclockwise 650 rpm

12M33.2 Advantages


Genuine marine design with simple solutions, easy routine maintenance and engine block inspection hatches.

Life cycle cost efficiency with extended mean time between overhauls (MBTO). Reliable design. Affordable engine.

Rating	Hz	kVA	kWe	rpm	g/kWh	l/h	IMO
PRP	50	1190	952	1500	206	245	
PRP	60	1320	1056	1800	210	275	

Other power ratings are available on request.

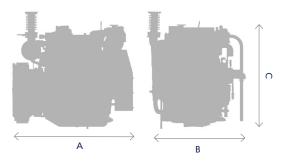
А	В	С	Weight
3670 - 3731	1822	1855	6599 - 7245

MARINE AUXILIARY ENGINES

- \cdot Best in Class fuel consumption and mean time between overhaul
- Design optimized for maintenance simplicity
- Reliability in the most extreme conditions
- Genuine Marine Design

4W105S

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 4 in line 105 x 130 mm 4.5L counterclockwise 650 rpm SAE 3 SAE 11.5"


4W105S Advantages

Continuous compact power with reference performances in its category. Easy service with accesible components and unit cylinder heads. Simple technology wth mechanical injection.

Life cycle cost efficiency with extended MTBO (Mean time between overhauls)

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO
90	121	1500	203	22	NA
108	145	1800	213	27	NA

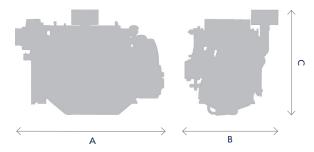
А	В	С	Weight
1058	905	1058	650

6W105S

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 105 x 130 mm 6.7L counterclockwise 650 rpm SAE 3 SAE 11.5"

6W105S Advantages

Continuous compact power with reference performances in its category. Easy service with accesible components and unit cylinder heads.


Simple technology wth mechanical injection.

Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

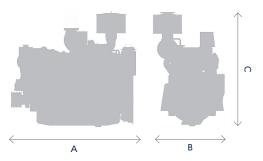
kW (PRP)	Нр	rpm	g/kWh	l/h	IMO
125	168	1500	214	31.5	
144	193	1800	213	36	II (C1-D2)

Main dimensions (mm) and dry weight (kg)

А	В	С	Weight
1362	900	1076	810

6M16

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 126 x 130 mm 9.7L counterclockwise 600 rpm SAE 1 SAE 14"


6M16 Advantages

Continuous compact power with reference performances in its category. Easy service with accesible components and unit cylinder heads. Simple technology wth mechanical injection.

Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO
204	274	1500	213	51	
240	322	1800	198	56	

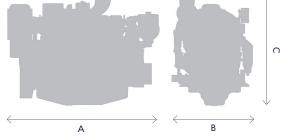
А	В	С	Weight
1513	867	1445	1050

6W126S

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 126 x 155 mm 11.6L counterclockwise 600 rpm SAE 1 SAE 14"

6W126S Advantages

Continuous compact power with reference performances in its category. Easy service with accesible components and unit cylinder heads.


Simple technology with mechanical injection.

Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO
290	394	1500	198	68	II (C1-D2)
300	408	1800	199	70	II (C1-D2)

Main dimensions (mm) and dry weight (kg)

А	В	С	Weight
1695	883	1240	1285
		-	-

6M26.3

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 150 x 150 mm 15 91 counterclockwise 650 rpm SAE 1 SAE 14"

6M26.3 Advantages

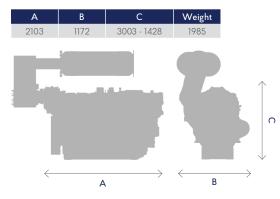
Continuous compact power with reference performances in its category. Easy service with accessible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO	EPA
441	600	1500	197	103		3
485	660	1800	207	119	11	-

А	В	С	Weight
2103	1172	1196	1985

6M26.3 IMO III | EPA 4 / Stage V

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 6 in line 150 x 150 mm 15.9L counterclockwise 650 rpm SAE 1 SAE 14"



6M26.3 Advantages

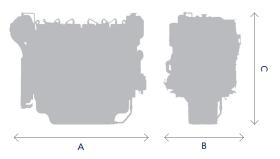
Continuous compact power with reference performances in its category. Easy service with accessible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO	EPA	Stage V
441	600	1500	197	103	III (D2)	4 (D2)	🗸 (D2)
501	681	1800	207	119	III (D2)	-	🗸 (D2)

Main dimensions (mm) and dry weight (kg)

6M33.2

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 6 150 x 185 mm 19.6L counterclockwise 650 rpm SAE 1 SAE 14"


6M33.2 Advantages

Continuous compact power with reference performances in its category. Easy service with accessible components and unit cylinder heads. Simple technology with mechanical injection.

Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO
500	691	1500	198	118	
552	760	1800	221	145	

А	В	С	Weight
1934	1184	1548	2390

12M26.2

- Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel
- 12 V @ 90° 150 x 150 mm 31.8L counterclockwise 700 rpm SAE 0 SAE 18"

12M26.2 Advantages

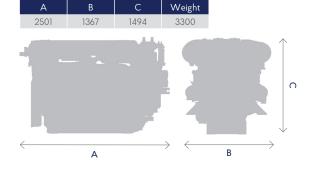
Continuous compact power with reference performances in its category. Easy service with accesible components and unit cylinder heads. Simple technology with mechanical injection.

Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO
656	880	1500	240	185	II (C1)
808	1083	1900	221	210	II (C1)
820	1100	1500	228	220	II (D2)
880	1180	1500	226	234	II (D2)
920	1234	1800	226	245	II (D2)

Main dimensions (mm) and dry weight (kg)

12M26.3


Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 12 V @ 90° 150 x 150 mm 31.8L counterclockwise 650 rpm SAE 0 SAE 18"

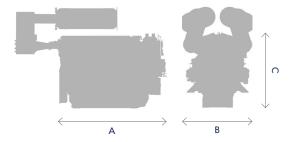
12M26.3 Advantages

Continuous compact power with reference performances in its category. Easy service with accessible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO	EPA
882	1200	1500	197	207		3
970	1320	1800	201	232	11	3

12M26.3 IMO III | EPA 4 / Stage V

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 12 V @ 90° 150 x 150 mm 31.8L counterclockwise 650 rpm SAE 0 SAE 18"


12M26.3 Advantages

Continuous compact power with reference performances in its category. Easy service with accessible components and unit cylinder heads. Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO	EPA	Stage V
882	1200	1500	197	207	III (D2)	4 (D2)	√ (D2)
1200	1632	1800	201	232	III (D2)	4 (D2)	√(D2)

Main dimensions (mm) and dry weight (kg)

А	В	С	Weight
3056	1556	2085	3900

12M33.2

Number of cylinders Bore and stroke Total displacement Engine rotation Idle speed Flywheel housing Flywheel 12 V @ 90° 150 x 150 mm 31.8L counterclockwise 650 rpm SAE 0 SAE 18"

12M33.2 Advantages

Continuous compact power with reference performances in its category. Easy service with accessible components and unit cylinder heads. Simple technology with mechanical injection.

Life cycle cost efficiency with extended MTBO (Mean time between overhauls).

kW (PRP)	Нр	rpm	g/kWh	l/h	IMO
1000	1360	1500	206	245	II (C1)
1104	1500	1800	210	275	II (C1)

А	В	С	Weight
2411	1512	1568	3900

MARINE ACCESSORIES: MARINE CONTROL & MONITORING SOLUTIONS

Moteurs Baudouin provides the full spectrum of marine accessories by developing a wide range of integrated control and monitoring solutions in flexible configurations to meet the needs of every application. From the most economical and simple system, to complex and interfaced solutions, each product is supplemented with modular customization features.

Mini

The MINI control system is a simple controller that provides safety management as well as engine and gearbox parameter information. MINI is particularly adapted to smaller vessels and simple installations.

Main features

- · 3 lines digital parameters display
- Engine start /stop
- Emergency stop
- Buzzer
- Override
- Dimmer

The ECO control system is the nonclassified application highly flexible solution. Including up to two control stations ECO can also communicate with various ship management systems via modbus.

Main features

- 12 inch touch screen
- Engine start /stop
- Emergency stop
- Buzzer
- Override
- Light on/off
- Engine room panel with monochrome display
- Up to 80 m wiring with bridge station
- Up to 17 alarms

Eco

Options

- Upto 2 Bridge slave station
- Engine electrical prelube pump*
- Electronic speed & clutch control lever
- \cdot Communication interface
- Check option availability
 with your Distributor
- * Options depend on the engine platform

Marine Control & Monitoring Solutions

Master

Options

- Up to 4 bridge slave stations
- Remote alarm panel
- Engine electrical prelube pump
- Fresh water preheater
- Electronic speed & clutch control lever
- Communication interface
- Check option availability with your Distributor

The MASTER control system is the ultimate control and monitoring solution. With up to five possible stations, modbus communication interface within a comprehensive option list, MASTER is typically designed for high project customization level or more complex installations. TAC available.

Main features

- 12 inch bridge color display (propulsion)
- Engine start / stop
- Emergency stop
- Buzzer
- Override
- \cdot Light on/off
- Engine room cabinet
- with monochrome display
- \cdot Local/remote control switch
- $\cdot~$ Up to 80 m wiring with bridge station
- Up to 27 alarms

	F	Propulsion		Generator Set		Auxiliary		
	Mini	Eco	Master	Maxi*	Master	Mini	Eco	Master
4W10	5							
6W10	5		—					
6W120	6		—					
6M16			—					
M26.2	2							
M26.3	3							
M33.2	2							

* MAXI control system is the standard version.

Throttle Controls

A full range of solutions

Features

- · Mono lever / bilever controls
- Mechanical / Electronic engine compatibility
- Mechanical / Electronic gear box compatibility
- Classified applications
- Multiple Stations, up to 4
- Gear box control

Electronic Non-certified

Electronic Certified

Mechanical

Mechanical

Our Global Support Network

Products

Propulsion Engines

Genuine Spare Parts

Gearboxes

Shipped In 24 Hours

Genuine Spare Parts For

Guaranteed Performance

Controls

Throttles

Warranty Terms

Service

adoun

Best-In-Class Warranty Terms

Factory Trained Technicians

300+ Global

Service Partners

Warranty Terms

12 Months (extendable to 18 months).

With over 300 service points, our distributors are experts in finding you the right solution based on your location, application and emissions requirements.

The technicians in our network are factory-trained and ready to support you. To find your local distributor, please visit our website Baudouin.com

Scan to view this product guide online. Other power ratings are available on request.

Société Internationale des Moteurs Baudouin Technoparc du Brégadan 13260 Cassis Baudouin.com

M.R.100.EN.01.24 Moteurs Baudouin reserves the right to modify these specifications without notice. Document not contractual.

So a Martia