

6M33.3

Common rail diesel engine

Baudouin.com

Number of cylinders 6 Bore and stroke (mm) 150×185 Total displacement (L) 19.6

Engine rotation counter clockwise Idle speed (rpm) 700

Idle speed (rpm) /00
Flywheel housing SAE 0
Flywheel SAE 18"

Customer benefits

Genuine marine design with simple solutions and routine maintenance accessibility

Continuous compact power with top-tier performance in its category

Global environmental care: with low exhaust emission at any running cycle

Latest safe technology integration: electronic injection dynamic redundancy, high-efficiency ball bearing turbocharger, integrated circuits with 0 flexible hoses, and more

Emphasis on life cycle cost efficiency with extended MTBO and modular design reducing components and interfaces


Rated power - Fuel consumption

·	kW	HP	RPM	Fuel consumption			
Duty				Optimum value	Rated power		IMO
				g/kWh	g/kWh	l/h	
P1	552	750	1600	199	203	137	11-111
	552	750	1800	203	211	142	11-111
P2	574	780	1600	200	202	142	11-111
	574	780	1800	205	210	147	11-111
P3	670	911	1900	207	215	176	11-111
P4	750	1020	2000	209	224	205	11-111

Standard equipment

Dimensions and dry weight (mm/kg)

	P1	P2	P3	P4	
Application	Unrestricted	Continuous (Heavy)	Intermittent	Light	
Engine load variations	Not important	Important	Important	Very important	
Average Engine load factor	80-100%	30-80%	60%	60%	
Annual working time	5000 - 7000h	3000-5000h	1000-3000h	Less than 1500h	
Time at full load	12h each 12h	8h each 12h	2h each 12h	1h each 12h	

P1 Continuous Duty

- Deep sea trawlers
- Shrimps trawlers
- · Sea going tug boats
- · River tug boats
- Push boats
- Freighters
- Dredges
- LCTFerries

P2 Heavy Duty

- Deep sea trawlers
- Shrimps trawlers
- · Sea going tug boats
- · River tug boats
- Push boats
- Freighters
- Dredges
- · LCT
- Ferries

P3 Intermittent Duty

- · Seasonal passenger vessels
- · Fishing boats
- Pilot boats
- · Commercial pleasure boats
- · Pump boats
- Displacement sailboats
- Trawlers
- Bow thrusters

P4 Light Duty

- · Private pleasure boats
- Multi-hull pleasure boats
- Survey or rescue fast vessels
- Military fast vessels.

P5 High performance Duty

- Private pleasure boats
- Multi-hull pleasure boats

Standard equipment

Engine & Block Cast iron cylinder block, with replaceable cylinder liners

Separate cast iron cylinder heads Replaceable valves guides and seats Steel forged crankshaft with 7 bearings

Lube oil cooled light steel piston with 3 high performance piston rings

Cooling System

Two - stage cooling circuit with built - in HT thermostatic valve

Integrated fresh water expansion tank High efficiency tubular heat exchanger Belt driven centrifugal fresh water pump

Self priming raw water pump with bronze impeller

Lubrication System Full flow lube oil filters duplex type

Fresh water cooled lube oil heat exchanger Electrical draining and pre-lub pump

Fuel System Common-rail electronic injection

High pressure pump with shielded high pressure injection rail and

pipes

Fuel oil filter duplex type

Intake Air and Exhaust System Double flow raw water cooled intake air heat exchanger module

High efficiency dry turbocharger with ball bearing technology

Electrical System Voltage: 24V DC insulated

Electrical starter 190A battery alternator

Optional Equipment Keel Coooling configuration

1400N.m front PTO with elastic coupling

Additional pulley Elastic mounting

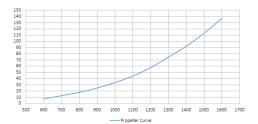
Closed circuit blow by filtration

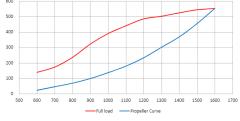
Air starter

Fresh water pre-heater Cabin heating connections Master BMS for full class engines

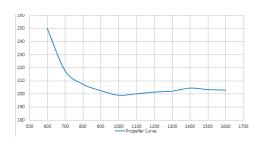
Additional displays

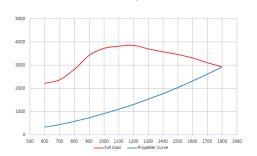
6M33.3


Common rail diesel engine

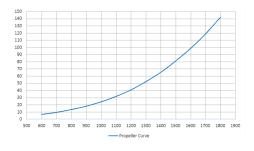

Performance

P1 552@1600rpm

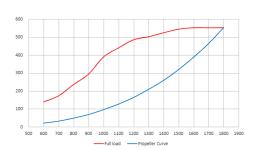

BSFC (L/h)

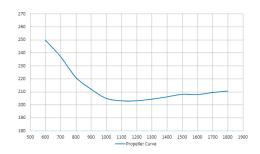

Power

BSFC (g/kWh)



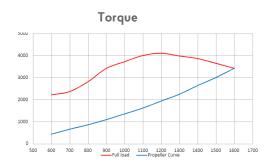
P1 552@1800rpm

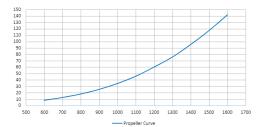

Torque


BSFC (L/h)

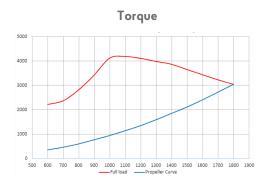
Power

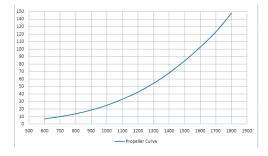
BSFC (g/kWh)

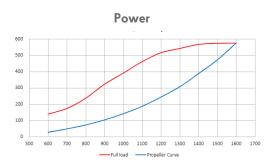




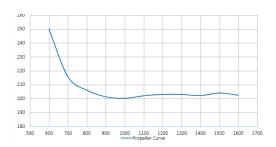
Performance

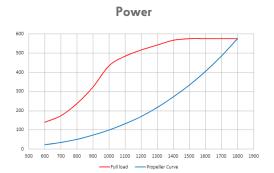

P2 574@1600rpm

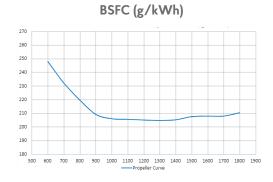

BSFC (L/h)



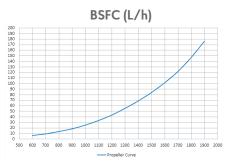
P2 574@1800rpm




BSFC (L/h)



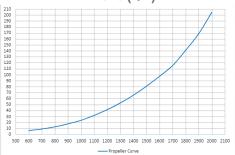
BSFC (g/kWh)



Baudouin


Performance

P3 670@1900rpm



P4 750@2000rpm

BSFC (L/h)

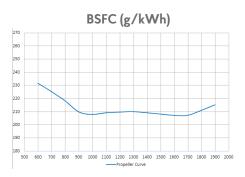
Power definition

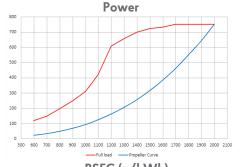
(Standard ISO 3046/1 - 1995 (F))

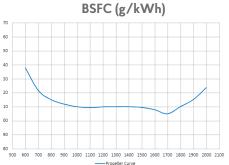
Reference conditions

 $\begin{array}{lll} \mbox{Ambient temperature} & 25^{\circ}\mbox{C} \slash 77^{\circ}\mbox{F} \\ \mbox{Barometric pressure} & 100 \mbox{ kPa} \\ \mbox{Relative humidity} & 30\%\mbox{R} \\ \mbox{Raw water temperature} & 25^{\circ}\mbox{C} \slash 77^{\circ}\mbox{F} \\ \end{array}$

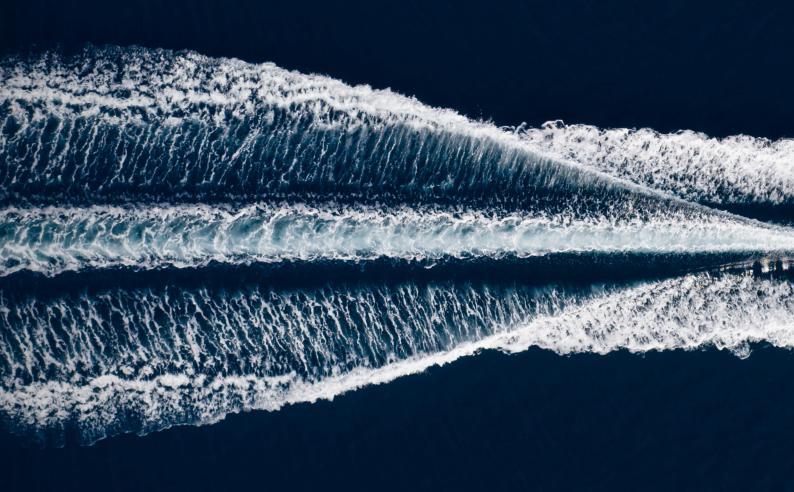
Fuel oil


Relative density Lower calorific power Consumption tolerances


Inlet limit temperature


0,840 ± 0,005 42 700 kJ/kg + 5%

(DIN ISO 3046-1) 35°C /95°F



Our ratings also comply with classification societies maximum temperature definition without power derating.

Ambient temperature $45^{\circ}\text{C} / 113^{\circ}\text{F}$ Raw water temperature $32^{\circ}\text{C} / 90^{\circ}\text{F}$

